Edge-Ends in Countable Graphs

نویسندگان

  • Gena Hahn
  • François Laviolette
  • Jozef Sirán
چکیده

The notion of ends equivalence classes on the set of rays (one-way infinite paths) of a graph is one of the most studied topics in infinite graph theory. An introduction to this theory and basic results can be found in Halin [3]. Halin defined two rays to be equivalent if no finite set of vertices can separate an infinite part of the first ray from an infinite part of the second one. In particular, Halin proved that in a countable connected graph G, the end-structure can be represented by a kind of spanning tree that he called faithful. Such a tree is defined by the property that from any given end of G it contains exactly one ray originating at x, for any x # V(G)). A natural and, as will be seen in this paper, very useful property of ends is the domination property. An end : is dominated if for some ray R (and so for all rays) in : there exists a vertex x which cannot be separated from an infinite part of R by any finite set of vertices. Intuitively, undominated rays are those one normally has in mind when thinking about infinite paths as ``going to infinity,'' whereas dominated rays appear to be ``trapped'' by the vertices that dominate them (and thus are not ``really'' rays). article no. TB961734

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurable Perfect Matchings for Acyclic Locally Countable Borel graphs

We characterize the structural impediments to the existence of Borel perfect matchings for acyclic locally countable Borel graphs admitting a Borel selection of finitely many ends from their connected components. In particular, this yields the existence of Borel matchings for such graphs of degree at least three. As a corollary, it follows that acyclic locally countable Borel graphs of degree a...

متن کامل

Spanning trees of countable graphs omitting sets of dominated ends

Generalizing the well-known theorem of Halin (1964) that a countable connected graph G contains an end-faithful spanning tree (i.e., an end-preserving tree that omits no end of G), we establish some results about the existence of end-preserving spanning trees omitting some prescribed set of ends. We remark that if such a tree exists, the omitted ends must all be dominated, and even then counter...

متن کامل

The Countable Character of Uncountable Graphs

We show that a graph can always be decomposed into edge-disjoint subgraphs of countable cardinality in which the edge-connectivities and edge-separations of the original graph are preserved up to countable cardinals. We also show that the vertex set of any graph can be endowed with a well-ordering which has a certain compactness property with respect to edge-separation.

متن کامل

Arithmetic labelings and geometric labelings of countable graphs

An injective map from the vertex set of a graph G—its order may not be finite—to the set of all natural numbers is called an arithmetic (a geometric) labeling of G if the map from the edge set which assigns to each edge the sum (product) of the numbers assigned to its ends by the former map, is injective and the range of the latter map forms an arithmetic (a geometric) progression. A graph is c...

متن کامل

CERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS

In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy  sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...

متن کامل

Edge-Magic Group Labellings of Countable Graphs

We investigate the existence of edge-magic labellings of countably infinite graphs by abelian groups. We show for that for a large class of abelian groups, including the integers Z, there is such a labelling whenever the graph has an infinite set of disjoint edges. A graph without an infinite set of disjoint edges must be some subgraph of H + I, where H is some finite graph and I is a countable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 70  شماره 

صفحات  -

تاریخ انتشار 1997